Available online at www.sciencedirect.com

sc.ENcE@p.“w

Journal of

Photochemistry

Photobiology

A:Chemistry

ELSEVIER

Journal of Photochemistry and Photobiology A: Chemistry 180 (2006) 322-327

www.elsevier.com/locate/jphotochem

Laser pulse control of exciton dynamics in the FMO complex:
Polarization shaping versus effects of structural and energetic disorder
Ben Briiggemann®*, Ténu Pullerits?, Volkhard May P

4 Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
Y Department of Physics, Humboldt University at Berlin, Newtonstr. 15, D-12489 Berlin, Germany

Available online 11 April 2006

Abstract

Femtosecond laser pulse control of exciton dynamics in biological chromophore complexes is studied theoretically using the optimal control
theory specified to open quantum systems. Based on the laser pulse induced formation of an excitonic wave packet the possibility to localize
excitation energy at a certain chromophore within a photosynthetic antenna system (FMO complex of green bacteria) is investigated both for
linearly polarized and polarization shaped pulses. Results are presented for an ensemble of N energetically disordered and randomly oriented FMO
complexes. Here, the optimized control pulse represents a compromise with respect to the solution of the control task for any individual complex
of the ensemble. For the case of an ensemble with N = 10 members the polarization shaped control pulse leads to a higher control yield compared
with a linearly polarized pulse. This difference becomes considerably smaller for an ensemble with N = 120 members. The respective optimized
pulses are used to drive excitation energy in a different ensemble with M > N complexes to simulate the usual experimental condition in solution.
For the case with N = 120, the relative control yield coincides with the resulting control yield “in solution”, giving a slightly higher control yield

for polarization shaped pulses.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The combination of femtosecond laser pulse shaping with
a closed-loop feedback arrangement represents an experimental
breakthrough in realizing the control of molecular dynamics and
chemical reactions by light (cf., for example, Ref. [1] and the
recent attempt to trigger conformational changes in Ref. [2]).
Todays pulse shaping technology allows for a simultaneous and
independent manipulation of the two different polarization di-
rections of the laser beam [3]. If in the course of optical excitation
the spatial direction of the electric-field vector can be adapted
to the transition dipole moment orientation we may expect a
considerable increase of the control yield. However, random
orientations of the molecules in solution may drastically reduce
this effect.

In the following we will investigate the potential of the po-
larization control in comparison to a control task with linearly
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polarized light only (some preliminary results have been already
presented in Ref. [4]). A well suited example is given by the
control of excitation energy dynamics in spatially non-regular
chromophore complexes like photosynthetic antenna systems.
This has already been demonstrated by us for the FMO com-
plex [5] and the PS1 [6]. The particular control aim there has
been the excitation energy localization at a single chromophore
at a definite time. This requires the photo induced formation
of an excitonic wave packet, i.e., the time-dependent superpo-
sition >, Ay(f)|) of the various exciton states |«) in such a
way that at the final time #; of the control task the superposi-
tion corresponds to excitation energy localization at a particular
chromophore m, i.e., Y, Aa(t = tr)|e) = |m). Here, we also in-
dicate that it would be of interest to study the more realistic case
of a distribution of the time to reach the target state, say, 10 fs
around #; [7]. However, since the exciton dynamics in the FMO
complex are rather slow on a 20 fs time-scale such a target state
delocalized in time would not change the outcome much.

Our simulations of exciton localization in the PS1 core an-
tenna [6] have shown that the control efficiency is strongly tem-
perature dependent, and that for each temperature a different op-
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timal pulse length exists. Furthermore, for the FMO complex,
the influence of higher excited states and of exciton—exciton
annihilation could be discussed, also including a first account
for random complex orientation and energetic inhomogeneity
[5]. There exists also an experimental demonstration of energy
transfer control in the photosynthetic antenna LH2 by guiding
excitation energy between carotenoids and bacteriochlorophylls
[8,9].

To form the superposition state ) ., A, (#)|«) all exciton states
in a control task have to be addressed, therefore the oscillator
strength should be distributed over all exciton states |«) what
excludes the use of highly symmetric complexes for such stud-
ies. For an appropriate non-regular structure, however, different
transition dipole moments d,, may also posses different spatial
orientations. Having a polarization shaped field E(¢), the spatial
orientation of E(¢) (perpendicular to the propagation direction)
represents an additional degree of freedom. It increases the flex-
ibility for putting the various coupling expressions dyE(f) in
the right order of magnitude at the right time interval to finally
achieve the proper wave packet formation.

This will be demonstrated in using a theoretical description
in terms of a density matrix version of the optimal control the-
ory (OCT) [10-12]. In continuing our computations of Ref. [5]
we aim at localizing an excitonic wave packet at a certain chro-
mophore in the FMO complex. The FMO complex is particu-
larly suited because it contains only seven bacteriochlorophylls
(BChls) as chromophores with a well-defined energy and spatial
position [13,14]. However, the chromophores of the FMO com-
plex exhibit energetic disorder. And, since they are investigated
as isolated particles in solution, one has also account for their
random orientations. Therefore, it will be a particular challenge
to find out whether or not polarization shaping may compensate
the control yield reduction originated by disorder.

The paper is structured as follows. First the exciton model of
the FMO complex and the related density matrix approach are
shortly explained. Afterwards, OCT is used to calculate the op-
timized excitation pulses accounting for polarization shaping as
well as the effect of disorder in an ensemble of FMO complexes.
Up to 120 energetically disordered and randomly oriented FMO
complexes are considered simultaneously in Section 3.1. In the
last section we compare the control achievements of several op-
timized pulses with those obtained on a much larger ensemble
of FMO complexes in order to imitate a typical experimental
setting.

2. Theory
2.1. Exciton model

Exciton models for photosynthetic antennae like the FMO
complex are well established (see, e.g., Refs. [15-17]). Each
chromophore at site m is modeled as a two level system (ground-
state and Q y-state) with the respective excitation energy &,, and
the transition dipole moment jt,,, oriented according to the spatial
structure of the complex (cf. Fig. 1). The Coulombic interaction
Vimn among different chromophores of the FMO complex (re-
sponsible for excitation energy transfer) can be approximated
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Fig. 1. Arrangement of the seven BChls in the FMO complex of Prosthecochlo-
ris aestuarii [13] (identifier 4BCL in the Protein Data Bank). The atoms in the
line of the respective Qy dipole moments are plotted in black (using rasmol).
At the end of the control pulse, the exciton should be localized at the central
chromophore, thus acting as the target chromophore.

as a dipole—dipole coupling. For all quantities mentioned so far
we use values suggested in Ref. [14]. It suffices for the present
purposes to concentrate on the state |0) where all molecules
are in their ground-state, and on the states |m) with the sin-
gle chromophore m excited. Diagonalizing the Hamiltonian of
these singly excited states leads to the (single) exciton states
ley =, Co(m)|m), with energies &, (for a more involved dis-
cussion, also including two-exciton states see Refs. [5,18,16]).
Exciton—vibrational coupling is obtained by accounting for a
modulation of the &, and V,,,;, by intra- and inter-chromophore
vibrations as well as those of the protein matrix (for details see
Refs. [16,17]).

2.2. Density matrix theory

Since the exciton—vibrational coupling in the FMO complex
is relatively weak, the whole set of vibrations can be handled
as a reservoir staying in thermal equilibrium independent on
the actual excitation of the chromophores. Thus, it is possible
to account for the resulting effects of excitonic energy dissipa-
tion and dephasing in the framework of a density matrix theory.
It is based on the introduction of the reduced exciton density
operator p and a perturbative treatment of the coupling to the
reservoir. We apply the so-called Markov and Bloch approxima-
tion [5,18,16,17] and write the related equation of motion for p
as

d
gf)(t) = —i (Lo — iD + Licia) p(1). (D

The superoperators Lo, D and Lgelq account for the free evolu-
tion of excitons, for dissipation and for the coupling to the radia-
tion field, respectively. Related density matrix equations follow
by changing over to the exciton density matrix Pap = (@|p()|B)
(in this notation, e.g., & can stand either for an exciton state or for
the ground state of the complex). Then, the diagonal elements
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of the density matrix give the populations Py (of the exciton
states or the ground-state). The free time evolution is simply
determined by (&|Lop|B) = .Q&Ep&ﬁ(t) with h.Q&ﬁ =€y — &g
(note eg—p = 0). The action of the dissipative superoperator D
(related to excited states & = «) is obtained as

(@|DRIB) = 8up > _(kasyPuc — Ky—abyy)
Y

1
5 (1= 80p) Y (kamsy + Ky )
14

The quantities k,—. g are rate constants for exciton energy relax-
ation via a transition from state |«) to state | 8). They read

kamsy = 27022, (1 +1(2ay) Y [Calm)Cy(m)*(J (2ry)

— J(=82ay)). 3

where n(§2) denotes the Bose—Einstein distribution and J is
the spectral density of the coupling to the reservoir vibra-
tions identical for each chromophore. The special form J(w) =
Jjw? Ei:] 1/ 2a)3 X exp(—w/w,) used in the following has been
deduced from fluorescence measurements [19,20]. Finally, the
coupling to the radiation field Lgelq is simply obtained via the
commutator with the coupling expressions —E(#)t (where [ is
the overall dipole operator of the complex).

2.3. Polarization shaping and account for disorder in
optimal control theory

Within OCT one computes the temporal behavior of the field
E(#) which drives the system into the chosen target state. With
regard to the experimental setup, the result of the OCT would
correspond to a phase and amplitude shaped pulse. In the present
case E(¢) is obtained by a maximization of the population of the
target state |m). This requires to maximize Py, (¢) = (m|p(t)|m)
at the constraint of a finite laser pulse intensity (the matrix ele-
ments of the density operator in the basis of localized excitations
can be easily computed from the pug). The demand of maxi-
mizing P, results in the following functional equation for the
temporal behavior of the optimal pulse field-strength [5,10,12]:

i
AL (L)
Here, A(?) is the Lagrange parameter of OCT, whose time de-
pendency assures that the pulse is switched on and off smoothly
at 7o and f¢, respectively (its integrated value is related to the
field intensity in a nonlinear way [5]). Besides p, the trace in
Eq. (4) (to be taken with respect to the ground-state and all sin-
gle exciton states) also includes the auxiliary density operator &
which has to be propagated backwards in time by an equation
which appears as a slight modification of Eq. (1) and with the
“initial value” &(t) = |m){m| [21] (see also Refs. [5,10,12]).
The temporal evolution of both density operators is determined
by the field E given explicitly by Eq. (4). Therefore, replacing E
in Lgelq by the right-hand side of Eq. (4) one arrives at coupled
nonlinear equations of motions for p and &. Their iterative solu-
tion solves the control task and results in an expression for the

E@®) =

tr{6(; E) [2, p(r; E)]}. “

optimal pulse (provided that convergence has been achieved, for
details see Ref. [5]).

If the radiation field which propagates in z-direction is lin-
early polarized, say in x-direction, Eq. (4) determines the re-
lated field amplitude E,, and on the right-hand side the vecto-
rial dipole operator has to be replaced by its x-component i .
To account for an independent variation of the two polarization
directions of the radiation field we represent E by the field ampli-
tude Ey in x-direction and E in y-direction. Then, a respective
separation of Eq. (4) results in coupled functional equations for
E,(t) and E (). Moreover, the expression in the equation of mo-
tion (1) for the density operator describing the coupling to the
radiation field reads —[Eyftx + Eyfty, p]/h. In an experiment
this approach would correspond to the shaping of amplitude and
phase in x- and y-polarization separately.

The inclusion of energetic disorder (for example, the fluc-
tuation of the chromophore excitation energies ¢,,) and random
spatial orientation is somewhat more involved [5]. Now, the laser
pulse has to solve the control task for an ensemble of complexes
where the individual complexes may differ one from another.
Accordingly, the optimal pulse is determined by an expression
similar to Eq. (4) but with an ensemble average on the right-hand
side. If denoted either for the x- or the y-component of the field
it reads

N

1 i . —_—
_ 5D Byl . 29
Ery= ]-§=1: P HOV GBI, PV EN). 5)

Here, we have to understand E at the right-hand side as
n,Ey +nyE,, and j counts the N different complexes of the
ensemble. Also, the right-hand side includes the respective en-
semble (configuration) average 1/N x ZI/V:l .. = (.. Jconfig-

Moreover, the dipole operators ;15;" ) or [L(yj ) of the Jj-th complex

appear as well as the two density operators p/) and 6/). Those
have to be propagated according to equations like Eq. (1) but
specified to the j-th complex of the ensemble. If Ey and Ey in
the field-term of these equations of motion are replaced by the
respective right-hand side of Eq. (5) all equations for ) and
&) are coupled one to another and have to be solved simulta-
neously. Usually, to arrive at a satisfactory disorder averaging,
N has to be about 10° and larger [16]. This would make the
computation rather expensive and a considerable reduction of N
might be necessary.

3. Results and discussion

The theoretical approach of OCT shortly explained in the
preceding section is used next to study laser pulse induced
excitation energy localization at a particular chromophore of
the (monomeric) FMO complex. All definitions and parame-
ters used are directly comparable to our foregoing studies of
Ref. [5]. In particular, the simulations are carried out at 4 K,
and the final time #; of the control task is put at 600 fs. The over-
all single-exciton population of the complexes Pex = >, faa =
>4 Pn = (1 — Pp) has been limited to values of 0.25 £ 0.03 by
a proper value of the Lagrange parameter A(¢) in Eq. 5 [5]. This
guarantees to stay in a linear excitation regime and justifies the
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neglect of two and higher exciton states. In this connection it is
advisable to renormalize the configuration averaged target state
population to {Pex)config as

(Pm(t»conﬁg
<Pex(t)>conﬁg ’

where (Py)config denotes the configuration averaged excitation
probability of chromophore m acting as the target chromophore.
Independent on the degree of overall excitation the renormalized
population tells us to which extend the excitation present among
the single-exciton states arrived at the target state. For the config-
uration averaging, energetic disorder can be reduced to diagonal
disorder with the single chromophore energies fluctuating inde-
pendently about 100 cm™" (full width at half maximum) around
their mean value (similar to that what has been used in Ref.
[14]). Moreover, random spatial orientations of the complexes
have been assumed.

Py () = (6)

3.1. Laser pulse control for a disordered ensemble of
complexes

We studied two types of ensembles, one with N = 10 com-
plexes and one with N = 120. The first corresponds to an exper-
iment close to the border of single-molecule spectroscopy. The
larger ensemble should be related to an experiment done at a
rather huge number of complexes. We assume here that the ori-
entation and the energetic disorder of the single complexes does
not change during the experiment. The restriction to N = 120,
however, is dictated by the larger numerical effort necessary.

Fig. 2 shows the averaged site populations (the target state
population P{™™ and all other site populations PY(IZIZ) together
with the temporal behavior of the optimal pulses for N = 10.
Using a linearly polarized optimal pulse (Fig. 2A), the aver-
age population of the central (target) chromophore in the FMO
complex is coherently driven up to a level of 0.45, (cf. Ref. [5]).
Compared to the population of about 0.7 that could be achieved
for a properly oriented single FMO [5], the level of control is
reduced. Now we enable polarization control, but leave all other
parameters untouched. For a single complex, the target site pop-
ulation went up to 0.8 (not shown), and the optimization gain
does not depend as much on the orientation as in the previous
case. Using the same 10 complexes as before, the renormalized
population of the target chromophore (also averaged, cf. Eq. (6))
reaches P = (.55 at the target time, which is less than in the
case with only a single complex but more than what could be
achieved with a linearly polarized pulse (Fig. 2B). A closer in-
spection of the resulting pulses reveals that the x-polarized and
the y-polarized parts are shifted in phase by about 0.657, thus
leading to a mainly circularly polarized pulse.

The simulations discussed beforehand are repeated for a set
of N = 120 complexes. Now, the control yield is further re-
duced, reaching P = (.33 for the linearly polarized pulse
(Fig. 3A), and P = (.34 for the polarization shaped pulse
(Fig. 3B). The phase shift between the x- and y-polarized parts
of the pulse is about 0.557, thus again giving a mostly circularly
polarized pulse. The independence of the control yield on the
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Fig. 2. Time evolution of the renormalized averaged populations P,(lren) of the
seven chromophores in a disordered ensemble of 10 FMO complexes after ex-
citation with the optimal pulse (the target site population is displayed by the
solid line, all other populations are shown by dashed lines, cf. Fig. 1). In case
A (upper panel), the optimization was restricted to a linearly polarized pulse
(see the lower section for the temporal behavior of the field-strength). In case
B (lower panel), the optimization covered two polarization directions (see the
lower section for the temporal behavior of both field-strengths).

concrete polarization of the laser pulse for a large ensemble is
not astonishing. In such a case where really random orientation
and Gaussian energy distribution is achieved the differences be-
tween linear and polarization shaped excitation is averaged out.
The random orientation of the complexes does not favor a pos-
sible adaption of the polarization shaped pulse to the various
excitonic transition dipole moments. However, the resulting cir-
cular polarization of the optimal pulse suggests that the circular
dichroism (CD) of the FMO complex is addressed. Since its CD
is small compared to the linear absorption (<1%) [14], the gain in
control changing from linearly polarized to circularly polarized
laser pulses is limited.

3.2. Laser pulse control in the limit of a large ensemble of
disordered complexes

The case of an ensemble with N = 120 complexes indicates
the right tendency for an averaging with respect to a rather huge
number of complexes. Nevertheless, statistical fluctuations are
strong and results for N > 120 are of interest. This would also
account for changes of orientation or energetic disorder during
the measurement, since all possible orientations and energetic
disorder distributions are already present. As the direct method
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Fig. 3. Time evolution of the renormalized averaged populations P,(,re") of the
seven chromophores in a disordered ensemble of 120 FMO complexes after
excitation with the optimal pulse (the target site population is displayed by the
solid line, all other populations are shown by dashed lines, cf. Fig. 1). In case
A (upper panel), the optimization was restricted to a linearly polarized pulse
(see the lower section for the temporal behavior of the field-strength). In case
B (lower panel), the optimization covered two polarization directions (see the
lower section for the temporal behavior of both field-strengths).

of going to larger N is computationally too expensive, we pro-
ceed in a different way. We use the optimal pulses gained for
control tasks at N < 120 and test their quality by driving FMO
complexes of a much larger ensemble with M > N complexes.

The result is given in Fig. 4A and B, for the linear and po-
larization shaped pulse, respectively. In each picture, the up-
per curve shows the renormalized population of the target chro-
mophore in dependence on the number of complexes N in the
completely controlled ensemble. The lower curve displays the
renormalized target chromophore population at #; averaged with
respect to the “solvent ensemble” of M = 5000 complexes. The
actual value of N indicates that the “solvent ensemble” has been
driven by the optimal pulse already obtained for the N-ensemble.
As a reference, a 200 fs (full width at half maximum) Gaussian
pulse at 803 nm has been used. Due to its small bandwidth of
5nm it excites mostly one specific exciton state, which is by
70% localized at the target chromophore (giving rise to a target
site population of 0.30). As it is shown in the upper parts of Fig.
4A and B the two population values converge in both cases: to
0.33 for the linearly polarized pulse, and to the slightly higher
value of 0.34 for the polarization shaped pulse, 10% and 13%
higher than that for the reference pulse, respectively. The lines
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Population
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Fig. 4. Normalized averaged population P,s,re") of the target chromophore in
dependence on the number N of different FMO complexes in the ensemble
(bars connected by a solid line). In the upper panel ‘A’, a linearly polarized
laser pulse has been used, whereas for the lower panel ‘B’, polarization shaping
was included. Additionally, the averaged normalized population of the target
chromophore in a different ensemble of M = 5000 disordered complexes is
displayed vs. N (squares connected by a dotted line). The respective values are
computed in using the optimal pulse obtained for the actual value of N. Each
simulation has been repeated three times, the mean value is shown, and the
highest and lowest value are indicated by the error bars. The lines are fits using
a single exponential.

are given by one exponential with the decay constants of v ~ 15
for all pulses. It is interesting to see that for the linearly polarized
control pulse, even for the lowest number of N = 10 complexes
in the completely controlled ensemble, some of the pulses give
an excellent yield in the solvent ensemble. With larger N only
the variance of the yields of the solvent ensemble for different
optimal pulses gets smaller (Fig. 4A). However, for the polar-
ization shaped pulses N > 40 is needed until the maximal yield
for the solvent ensemble is consistently reached (Fig. 4B).
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Fig. 5. Distribution of the averaged population P,(,fe") of the target chromophore
in an ensemble of 5000 disordered complexes after excitation with the optimal
pulse following from particular control tasks: use of a linear polarized pulse (case
A), optimized for 120 complexes (solid curve,+). Polarization shaped pulse (case
B), optimized for 120 complexes (dashed curve, x). Gaussian pulse centered
at the excitation energy of the target site (short dashed curve, stars). The inset
displays the distribution of the averaged normalized population (P, / Pex)config
of the target chromophore for the same optimal pulses.
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As a last topic we investigate how the distribution of the in-
dividual control yields P{*™ in the “solvent ensemble” changes
between the optimized pulses of Fig. 3 (N = 120) and the ref-
erence pulse. The linearly polarized shaped pulse gives a simi-
lar yield distribution as the reference pulse, just slightly shifted
towards higher values, whereas the polarization shaped pulse
leads to a distribution which is more dominated by intermediate
values of P,(,fen) (Fig. 5). The difference becomes even clearer
if one changes to the relative yields with respect to the single
complexes, (P / Pex)config (Fig. 5, inset).

4. Conclusion

The potential of polarization shaping in laser pulse control of
excitation energy transfer in chromophore complexes has been
demonstrated by energy localization at a single chromophore of
the FMO complex. The level of control could be drastically en-
hanced by an optimal pulse consisting of an x- and y-polarized
part if the disordered ensemble is small and consists of N = 10
FMO complexes. Such an enhancement becomes small for a
larger ensemble of N = 120 complexes. Using the gained opti-
mal pulses it turned out that for large N the control yield con-
verges with the resulting control yield “in solution”, at 0.33 for
linearly polarized shaped pulses, and at 0.34 for polarization
shaped pulses, 10-13% higher than that of a reference single
wavelength Gaussian shaped pulse.

We conclude the need of rather small or ordered ensembles of
chromophore complexes when trying to localize excitation en-
ergy. In such a case the control with polarization shaped pulses
offers a big advantage. Once excitation energy localization with
a sufficient control yield has been achieved one may systemati-
cally study different relaxation pathways starting with excitation
energy localized at different chromophores.
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